
Clash: Haskell for FPGA Design
It's easy as 1 - 2 - 3 ... 419,200

Gergő Érdi
https://unsafePerform.IO/

Lambda Days 2025

12th June 2025.

https://unsafePerform.IO/

1. Introduction: FPGAs and Clash

2 / 38

Regularity of integrated circuits
• Zoom in far enough, and all ICs are just a bunch of transistors wired together (modulo

analog/electric components)
• We can make any digital circuit by just changing how the transistors are connected
• Two transistors can form a NAND gate, which is universal
• Example: nine NAND gates make one full adder

x
y

z

c

c'

3 / 38

Stateful circuits

Connecting NAND gates in a clever way, we can create a flip-flop that stores its d input when

clk goes from low to high, and keeps that on its q output:

d

clk

q

4 / 38

Abstractions

• Bus: multiple wires in parallel

• Multi-bit registers: a fixed-size array of flip-flops

• Lookup table-based Boolean functions: instead of worrying about building circuits from

individual transistors, we can build a circuit that can be configured for any 𝔹𝑛 → 𝔹𝑚

function (for fixed 𝑛 and 𝑚)

• Synchronous ciruits: shared clock for all registers, intra-clock-cycle behaviour ignored

(as long as everything settles in time)

5 / 38

Field-Programmable Gate Arrays
• A large amount of logic blocks, with configurable intra-block Boolean functions and

registers, and configurable inter-block connections
• I/O ports also accessible through these interconnects

• ”A chip fab on your desktop”: designs can be uploaded electronically

6 / 38

RTL: the register-transfer level model

• A convenient way to abstract the details of individual FPGAs: arbitrary-sized

”super-functions” and ”super-registers”

fun

clk

reg

x

y

• These get mapped to as many logic blocks as needed, depending on the concrete target

FPGA

7 / 38

Clash: Haskell to Hardware (FPGAs, ASICs)
• Signal :: Domain -> Type -> Type
• instance Applicative (Signal dom)
• register :: a -> Signal dom a -> Signal dom a

fun

clk

reg

x

y

y = register y0 (fun <$> x <*> y)

y is recursively defined, but the recursion is guarded by register.

8 / 38

Clash: Haskell to Hardware (FPGAs, ASICs)
• Signal :: Domain -> Type -> Type
• instance Applicative (Signal dom)
• register :: a -> Signal dom a -> Signal dom a

fun

clk

reg

x

y

y = register y0 (fun <$> x <*> y)

y is recursively defined, but the recursion is guarded by register.

8 / 38

Clash: Haskell to Hardware (FPGAs, ASICs)
• Signal :: Domain -> Type -> Type
• instance Applicative (Signal dom)
• register :: a -> Signal dom a -> Signal dom a

fun

clk

reg

x

y

y = register y0 (fun <$> x <*> y)

y is recursively defined, but the recursion is guarded by register.

8 / 38

Example: Counters

countTo800
:: (HiddenClockResetEnable dom)
=> Signal dom (Index 800)

countTo800 = cnt
where

cnt = register 0 (countSucc <$> cnt)

• dom: clock domain
• HiddenClockResetEnable dom: implicit routing of clock, reset, and enable lines to

all registers
• Index 800: type of integers between 0 and 799 (Fin 800 if you know Agda, Idris, &c.)
• countSucc: uses the Counter typeclass

9 / 38

Example: Counters (cont'd)

countTo524And800
:: (HiddenClockResetEnable dom)
=> (Signal dom (Index 524), Signal dom (Index 800))

countTo524And800 = unbundle cnt
where

cnt = register (0, 0) (countSucc <$> cnt)

• Counter is closed over products
• unbundle :: Signal dom (a, b) -> (Signal dom a, Signal dom b)

10 / 38

2. Video game hardware

11 / 38

Minimal viable game console

Game logicButton

clk

Game

state

Video VGA

New frame

trigger

New frame

trigger

en

12 / 38

Minimal viable game console

Game logicButton

clk

Game

state

Video VGA

New frame

trigger

New frame

trigger

en

12 / 38

Minimal viable game console

Game logicBTN

clk

Game

state

Video VGA

New frame

trigger

entopEntity
:: "CLK" ::: Clock Dom25
-> "RESET" ::: Reset Dom25
-> "BTN" ::: Signal Dom25 Bool
-> "VGA" ::: VGAOut Dom25

topEntity clk rst btn = withEnableGen board clk rst btn
where

board btn = vga
where

state = regEn initState newFrame (updateState <$> btn <*> state)
(vga, newFrame) = video state

createDomain vSystem{vName="Dom25", vPeriod = hzToPeriod 25_175_000}

13 / 38

Minimal viable game console

Game logicBTN

clk

Game

state

Video VGA

New frame

trigger

en

topEntity
:: "BTN" ::: Signal Dom25 Bool
-> "VGA" ::: VGAOut Dom25

topEntity btn = vga
where

state = regEn initState newFrame (updateState <$> btn <*> state)
(vga, newFrame) = video state

14 / 38

Video signal generation
• Cathode ray tube (CRT): electron beam scans the screen (our) left to right, top to bottom,

like a typewriter writing out a paragraph, changing intensity to render the image

(0,0) (639,0)
(0,1) (639,1)
(0,2) (639,2)

(0,478) (639,478)
(0,479) (639,479)

• At the end of each line / frame, a horizontal / vertical sync signal triggers the beam to go

return to the next line / frame's start.

15 / 38

VGA

• VGA: old analog video standard
• Sweet spot of theoretical simplicity and widespread support both by displays and FPGA

development boards
• Three separate analog color channels (red/green/blue)
• Separate horizontal and vertical sync trigger lines
• Different frame rates and resolutions possible, depending on exact sync timings
• Timings quantized to a given pixel clock

16 / 38

VGA sync signals

Horizontal sync

Visible area Front porch

Sync pulse

Back porch

Vertical sync

Visible area

:

Front porch

:

Sync pulse

:

Back porch

:

17 / 38

VGA sync signals: 640 × 480 at 60 Hz

Horizontal sync

Visible area
25.422 𝜇s

Front porch
0.635 𝜇s

Sync pulse
3.813 𝜇s

Back porch
1.907 𝜇s

Vertical sync

Visible area: 15.253 ms

Front porch: 349.551 𝜇s

Sync pulse: 63.555 𝜇s

Back porch: 981.104 𝜇s

17 / 38

VGA sync signals: 640 × 480 at 60 Hz

Horizontal sync

Visible area
25.422 𝜇s

Front porch
0.635 𝜇s

Sync pulse
3.813 𝜇s

Back porch
1.907 𝜇s

Vertical sync

Visible area: 480 lines

Front porch: 11 lines

Sync pulse: 2 lines

Back porch: 31 lines

17 / 38

VGA sync signals: 640 × 480 at 60 Hz (25.175 MHz)

Horizontal sync

Visible area
640 pixels

Front porch
16 pixels

Sync pulse
96 pixels

Back porch
48 pixels

Vertical sync

Visible area: 480 lines

Front porch: 11 lines

Sync pulse: 2 lines

Back porch: 31 lines

17 / 38

VGA sync signals: Generating with counters

generateSync
:: (HiddenClockResetEnable dom)

=> (Signal dom Bit, Signal dom Bit)

• Complete horizontal raster line: 640+16+96+48 = 800 pixels
• Complete frame: 480+11+2+31 = 524 lines
• To generate a valid VGA signal, all we need to do is count to 800 × 524 = 419,200, and pull

the sync lines low if the counter falls into the sync pulse territory

• This only works out if the circuit runs at the right clock speed

18 / 38

VGA sync signals: Generating with counters

generateSync
:: (HiddenClockResetEnable dom

,DomainPeriod dom ~ HzToPeriod 25_175_000)
=> (Signal dom Bit, Signal dom Bit)

• Complete horizontal raster line: 640+16+96+48 = 800 pixels
• Complete frame: 480+11+2+31 = 524 lines
• To generate a valid VGA signal, all we need to do is count to 800 × 524 = 419,200, and pull

the sync lines low if the counter falls into the sync pulse territory
• This only works out if the circuit runs at the right clock speed

18 / 38

VGA sync signals: Generating with counters
generateSync = (vgaHSync, vgaVSync)

where
cnt = register (0, 0) (countSucc @(Index 524, Index 800) <$> cnt)
(vcount, hcount) = unbundle cnt

vgaHSync = sync low . (`between` (656, 751)) <$> hcount
vgaVSync = sync low . (`between` (491, 492)) <$> vcount

between :: (Ord a) => a -> (a, a) -> Bool
x `between` (lo, hi) = lo <= x && x <= hi

sync :: Bit -> Bool -> Bit
sync polarity b = if b then polarity else complement polarity

19 / 38

VGA sync signals: Generating with counters
generateSync = (vgaHSync, vgaVSync)

where
cnt = register (0, 0) (countSucc @(Index 524, Index 800) <$> cnt)
(vcount, hcount) = unbundle cnt

vgaHSync = sync low . (`between` (656, 751)) <$> hcount
vgaVSync = sync low . (`between` (491, 492)) <$> vcount

between :: (Ord a) => a -> (a, a) -> Bool
x `between` (lo, hi) = lo <= x && x <= hi

sync :: Bit -> Bool -> Bit
sync polarity b = if b then polarity else complement polarity

19 / 38

Beyond a blank screen
• The sync signals alone describe a valid, but blank, picture
• To render something more interesting, we need to know which particular visible pixel (if

any) is drawn by the electron beam right now

data VGASync dom = VGASync
{ vgaHSync :: Signal dom Bit
, vgaVSync :: Signal dom Bit
}

data VGADriver dom w h = VGADriver
{ vgaSync :: VGASync dom
, vgaX :: Signal dom (Maybe (Index w))
, vgaY :: Signal dom (Maybe (Index h))
}

20 / 38

Beyond a blank screen
vgaDriver640x480at60 :: ... => VGADriver dom 640 480
vgaDriver640x480at60 = VGADriver{ vgaSync = VGASync{..}, .. }

where
...
vgaX = strengthen <$> hcount
vgaY = strengthen <$> vcount

strengthen
:: forall n k. (KnownNat n, KnownNat k)
=> Index (n + k) -> Maybe (Index n)

strengthen x
| x <= fromIntegral (maxBound @(Index n)) = Just (fromIntegral x)
| otherwise = Nothing

21 / 38

VGA connector format

data VGAOut dom = VGAOut
{ vgaSync :: VGASync dom
, vgaR :: "RED" ::: Signal dom Word8
, vgaG :: "GREEN" ::: Signal dom Word8
, vgaB :: "BLUE" ::: Signal dom Word8
}

22 / 38

VGA connector format

type Color = (Word8, Word8, Word8)

vgaOut
:: (HiddenClockResetEnable dom)
=> VGASync dom
-> Signal dom Color
-> VGAOut dom

vgaOut vgaSync@VGASync{..} rgb = VGAOut{..}
where

(vgaR, vgaG, vgaB) = unbundle (blank <$> vgaVisible <*> rgb)
vgaVisible = isJust <$> vgaX .&&. isJust <$> vgaY
blank visible color = if visible then color else (0, 0, 0)

23 / 38

The complete video subsystem
video

:: (DomainPeriod dom ~ HzToPeriod 25_175_000
, HiddenClockResetEnable dom)

=> Signal dom St
-> (VGAOut dom, Signal dom Bool)

video state = (vgaOut vgaSync rgb, newFrame)
where

VGADriver{..} = vgaDriver640x480at60
newFrame = isFalling False (isJust <$> vgaY)
rgb = draw

<$> state
<*> (fromJust <$> vgaX)
<*> (fromJust <$> vgaY)

24 / 38

3. Flappy Bird

25 / 38

3. Flappy Bird Square

25 / 38

We're in familiar territory now!

What are the missing parts of our circuit?

• data St
• initState :: St
• updateState :: Bool -> St -> St
• draw :: St -> Index 640 -> Index 480 -> Color

Note that all of these are pure (non-Signal) Haskell functions, and these are all
game-specific. We really only needed to know enough Clash to count to 419,200!

26 / 38

Flappy Bird? More like Crappy Bird amirite?!
To fit into this talk, we make a ton of simplification:

• Fixed, looping level layout
• ”Bird” drawn as a square, ”pipes” drawn with just three colors
• ”Game over” is a single frame with red background, then immediately restarts

27 / 38

Game state
data St = MkSt

{ birdY :: Signed 10
, birdSpeed :: Signed 10
, scrollOffset :: Index (NumPipes * PipeWidth * PipeGap)
, gameOver :: Bool
}
deriving (Show, Generic, NFDataX)

type PipeGap = 4
type PipeWidth = 64
type NumPipes = 4

pipes :: Vec NumPipes (Index 480, Index 480)

28 / 38

Game state
data St = MkSt

{ birdY :: Signed 10
, birdSpeed :: Signed 10
, scrollOffset :: Index (NumPipes * PipeWidth * PipeGap)
, gameOver :: Bool
}
deriving (Show, Generic, NFDataX)

type PipeGap = 4
type PipeWidth = 64
type NumPipes = 4

pipes :: Vec NumPipes (Index 480, Index 480)

28 / 38

Game state: movement

updateState :: Bool -> St -> St
updateState btn st@MkSt{..} = st

{ scrollOffset = countSucc scrollOffset
, birdSpeed = if btn then birdSpeed - 5 else birdSpeed + 1
, birdY = birdY + birdSpeed `shiftR` 3
}

29 / 38

Game state: game over

updateState :: Bool -> St -> St
updateState btn st@MkSt{..}

| gameOver = initState
| otherwise = st

{ ...
, gameOver = not birdClear
}

where
(top, bottom) = pipeAt birdX st
birdClear = birdY `between` (top + birdHeight, bottom - birdHeight)

30 / 38

Game state: pipes
pipeAt :: Index 640 -> St -> (Index 480, Index 480)
pipeAt x MkSt{..} = (top, bottom)

where
idx :: Index NumPipes
gap :: Index PipeGap
offset :: Index PipeWidth
(idx, gap, offset) =

bitCoerce (satAdd SatWrap (fromIntegral x) scrollOffset)
(top, bottom)

| gap == maxBound = pipes !! idx
| otherwise = (minBound, maxBound)

1 0 0 1 0 1 0 1 1 0x = 598 =
idx
= 2

gap
= 1

offset
= 22

31 / 38

Rendering the gamefield

draw :: St -> Index 640 -> Index 480 -> Color
draw st@MkSt{..} x y

| isBird = yellow
| otherwise = blue

where
isBird =

x `around` (birdX, birdWidth) &&
fromIntegral y `around` (birdY, birdHeight)

around :: (Ord a, Num a) => a -> (a, a) -> Bool
x `around` (p, r) = x `between` (p - r, p + r)

32 / 38

Rendering the gamefield

draw :: St -> Index 640 -> Index 480 -> Color
draw st@MkSt{..} x y

| isBird = yellow
| otherwise = blue

where
isBird =

x `around` (birdX, birdWidth) &&
fromIntegral y `around` (birdY, birdHeight)

around :: (Ord a, Num a) => a -> (a, a) -> Bool
x `around` (p, r) = x `between` (p - r, p + r)

32 / 38

Rendering the gamefield

draw :: St -> Index 640 -> Index 480 -> Color
draw st@MkSt{..} x y

| isBird = yellow
| isPipe = green
| otherwise = blue

where
isPipe = not (fromIntegral y `between` (top, bottom))
(top, bottom) = pipeAt x st

33 / 38

Rendering the gamefield

draw :: St -> Index 640 -> Index 480 -> Color
draw st@MkSt{..} x y

| isBird = yellow
| isPipe = green
| otherwise = if gameOver then red else blue

where
isPipe = not (fromIntegral y `between` (top, bottom))
(top, bottom) = pipeAt x st

33 / 38

Rendering the gamefield: snazzing it up

draw :: St -> Index 640 -> Index 480 -> Color
draw st@MkSt{..} x y

| isBird = yellow
| isPipe = green
| otherwise = if gameOver then red else blue

where
(top, bottom) = pipeAt x st

pipeColor
| offset < 2 = gray
| offset < 10 = lightGreen
| offset > (maxBound - 2) = gray
| offset > (maxBound - 10) = darkGreen
| otherwise = green

34 / 38

Rendering the gamefield: snazzing it up

draw :: St -> Index 640 -> Index 480 -> Color
draw st@MkSt{..} x y

| isBird = yellow
| isPipe = pipeColor
| otherwise = if gameOver then red else blue

where
(top, bottom, offset) = pipeAt x st

pipeColor
| offset < 2 = gray
| offset < 10 = lightGreen
| offset > (maxBound - 2) = gray
| offset > (maxBound - 10) = darkGreen
| otherwise = green

34 / 38

Finished version

https://unsafePerform.IO/flappy/
35 / 38

https://unsafePerform.IO/flappy/

Next steps

• Wait for button press at game startup and after death:

data GameState = Welcome | Playing St

• Half-second ”flapping” for each single button press:

data BirdState = Floating | Flapping (Index 30)

• Randomize the pipes: move pipes and add an LFSR to St

lfsr :: Unsigned 9 -> Index 9

36 / 38

4. Smarmy salesmanship

37 / 38

Retrocomputing with Clash
Using Haskell’s tools of abstraction to their fullest potential in

hardware design

Full implementation of various fun retrocomputing devices:

• Desktop calculator
• Pong
• Brainfuck as machine code
• CHIP-8
• Intel 8080 CPU
• Space Invaders arcade machine
• Compucolor II home computer

Available in print and PDF at:

https://unsafePerform.IO/retroclash/
38 / 38

https://unsafePerform.IO/retroclash/

5. Extra slides

39 / 38

High-level simulation

• Compile the logic (updateState and draw) as normal Haskell functions, connect

keyboard events to updateState, render the output using e.g. SDL
• End-to-end simulation: VGA signal interpreter

40 / 38

Resource usage
Xilinx Vivado report:

Adders :
2 Input 10 Bit Adders := 14

Registers :
31 Bit Registers := 1
20 Bit Registers := 1
1 Bit Registers := 1

Muxes :
2 Input 31 Bit Muxes := 1
8 Input 24 Bit Muxes := 1
4 Input 18 Bit Muxes := 3
2 Input 18 Bit Muxes := 3
2 Input 1 Bit Muxes := 2

38 / 38

Resource usage
Xilinx Vivado report:

Adders :
2 Input 10 Bit Adders := 14 -- birdSpeed, birdY, around

Registers :
31 Bit Registers := 1 -- state
20 Bit Registers := 1 -- (vcount, hcount)
1 Bit Registers := 1 -- newFrame

Muxes :
2 Input 31 Bit Muxes := 1 -- updateState
8 Input 24 Bit Muxes := 1 -- draw
4 Input 18 Bit Muxes := 3
2 Input 18 Bit Muxes := 3
2 Input 1 Bit Muxes := 2

38 / 38

	Introduction: FPGAs and Clash
	Video game hardware
	Flappy
	Smarmy salesmanship
	Extra slides

